Posté par Adrien le Jeudi 06/05/2021 à 09:00

Prudence au volant, même pour les véhicules autonomes

Comment un véhicule autonome peut-il interagir avec des conducteurs humains, dont les comportements sont incertains ? Edouard Leurent a étudié des algorithmes d’apprentissage averses au risque, qui prennent des décisions prudentes en présence d’incertitude: ses travaux ont été distingués par le prix de thèse du Groupement de Recherche (GdR) MACS et du Club EEA en 2021.

Pour conduire, un véhicule autonome doit en permanence prendre une série de décisions: quand faut-il changer de voie, dépasser un véhicule trop lent, quand peut-on s’insérer dans le trafic ou doit-on au contraire céder le passage ? Ces décisions sont particulièrement difficiles à trancher lorsqu’elles font intervenir des conducteurs humains, dont les comportements ne peuvent être prédits avec certitude. Dans ce contexte, un algorithme peut-il apprendre de ses expériences et s’améliorer, tout en garantissant la sûreté ?

C’est le problème étudié par Edouard Leurent dans sa thèse "Apprentissage par renforcement sûr et efficace pour la prise de décision comportementale en conduite autonome", effectuée dans les équipes communes Inria SequeL et Valse au sein du Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL - CNRS/Université de Lille/Centrale Lille), et en partenariat industriel (CIFRE) avec le groupe Renault. Ses travaux viennent d’être récompensés par le prix de thèse du GdR MACS et de la section Automatique du Club EEA.

Pour assurer la sûreté, même sous incertitude, il s’est intéressé à la théorie de la prise de décision robuste, qui préconise de ne pas considérer uniquement le futur le plus probable, mais plutôt la pire issue possible parmi un ensemble de scénarios jugés crédibles d’après les observations dont on dispose.

Pour assurer la sûreté, on considère un ensemble de comportements possibles pour chaque véhicule observé. © Edouard Leurent

Cette démarche théorique est cependant difficile à mettre en pratique, à cause de l’explosion du nombre de scénarios à considérer et de l’accumulation rapide de l’incertitude. Pour en proposer une implémentation efficace, et qui soit accompagnée de garanties théoriques, les travaux d’Edouard Leurent combinent des techniques issues des théories l’automatique et de l’apprentissage automatique.

La décision robuste peut toutefois conduire à un excès de prudence. © Edouard Leurent

Mais la prise de décision robuste a également ses faiblesses: très pessimiste, elle tend à adopter un comportement excessivement précautionneux. Par exemple, elle interdirait de dépasser un véhicule lent sur l’autoroute, arguant que ce dernier pourrait très bien décider de changer de voie au dernier moment, provoquant un accident.

Plus généralement, on observe un conflit entre deux objectifs contradictoires: sûreté et efficacité. Une seconde partie de ses travaux consiste donc à estimer ce compromis, afin de pouvoir contrôler en temps réel le niveau de risque assumé par un véhicule autonome.

"L’apprentissage par renforcement est une technique prometteuse car très générale, mais dont les applications réelles restent aujourd’hui très limitées, explique Edouard Leurent à la suite de l’annonce de l’obtention du prix de thèse. À l’inverse, l’automatique est largement utilisée dans de nombreuses industries, mais repose sur des modèles parfois simplistes. À l’avenir, j’aimerais contribuer à combiner ces deux disciplines, afin de les rendre plus fiables, plus efficaces, et davantage applicables aux problématiques industrielles. Je suis très fier de cette distinction, qui me permettra de m’engager avec confiance dans mes prochains projets."
Dernières actualités
Rien ne doit entrer dans l’oeil et une des barrières contre les intrus est le film lacrymal. Or...
Une nouvelle étude portant sur 64 millions de kilomètres de cours d’eau dans le monde révèle...
Il y a 10 000 ans à Chypre, les premiers néolithiques ont domestiqué le sanglier endémique de...
La quantité de chaleur que notre planète emmagasine a pratiquement doublé depuis 2005. En termes...
Les sources de lumière joueront un rôle essentiel dans les technologies quantiques émergentes,...
Des chercheurs de CEA-Joliot, du Collège de France, du CNRS et de l'Université Paris 8 montrent...
Lorsque Bételgeuse, une étoile orange brillante de la constellation d'Orion, est devenue beaucoup...
Une nouvelle étude menée par des chercheurs de l'Université McGill et d’INRAE révèle...
L’avenir de la Russie dans le cosmos réside-t-il dans un partenariat avec la Chine ? Alors même...
Des scientifiques de l’UNIGE démontrent comment la mutation d’un seul gène peut ralentir la...
A partir des données de la sonde Cassini collectées autour d’Encelade - une lune de Saturne...
Conséquence du développement de l’industrie et du commerce mondial, le bruit sous-marin a...
Nul n’oserait dire que la domestication rend les animaux plus intelligents. Mais en attendant,...
Les phénomènes de résistance aux antibiotiques, développés par plusieurs pathogènes...
Le 10 juin 2021, le comité des programmes de l’ESA a sélectionné la mission EnVision renouant...
Des scientifiques du Laboratoire des multimatériaux et interfaces (CNRS/Université Claude Bernard...
Les États-Unis offrent un portrait de plus en plus contrasté: la plupart des États avec le plus...
Les interventions nutritionnelles visant à prévenir ou à contrer l'obésité et le diabète de...
Les zones littorales et côtières représentent des zones où les enjeux écologiques et humains...
Les équipes NIMBE/LIONS du CEA-Iramis et "Régulation transcriptionnelle des génomes" de...
Ce site fait l'objet d'une déclaration à la CNIL
sous le numéro de dossier 1037632
Informations légales