Adrien - Mardi 2 Décembre 2014

Planck: révélations sur la matière noire et les neutrinos fossiles

La collaboration Planck, qui implique notamment le CNRS, le CEA, le CNES et plusieurs universités françaises, dévoile à la conférence de Ferrara (Italie) les résultats des quatre années d'observation du satellite Planck de l'Agence spatiale européenne (ESA), dédié à l'étude du "rayonnement fossile", la plus vieille lumière de l'univers. Pour la première fois, la plus ancienne image de notre univers est mesurée précisément selon deux paramètres de la lumière (en intensité et en polarisation), sur l'ensemble de la voûte céleste. Cette lumière primordiale nous permet de "voir" les particules les plus insaisissables: la matière noire et les neutrinos fossiles.

De 2009 à 2013, le satellite Planck a observé le rayonnement fossile, la plus ancienne image de l'univers, encore appelé fonds diffus cosmologique. Aujourd'hui, avec l'analyse complète des données, la qualité de la carte obtenue est telle que les empreintes laissées par la matière noire et les neutrinos primordiaux, entre autres, sont clairement visibles.


Déjà, en 2013 la carte des variations d'intensité lumineuse avait été dévoilée, nous renseignant sur les lieux où se trouvait la matière 380000 ans après le Big-Bang. Grâce à la mesure de la polarisation de cette lumière (pour le moment dans 4 des 7 canaux), Planck est capable de voir comment cette matière bougeait. Notre vision de l'univers primordial devient alors dynamique. Cette nouvelle dimension et la qualité des données permettent de tester de nombreux paramètres du modèle standard de la cosmologie. En particulier, elles éclairent aujourd'hui ce qu'il y a de plus insaisissable dans l'univers: la matière noire et les neutrinos.

De nouvelles contraintes sur la matière noire


Les résultats de la collaboration Planck permettent à présent d'écarter toute une classe de modèles de matière noire, dans lesquels l'annihilation matière noire - antimatière noire serait importante. L'annihilation entre une particule et son antiparticule désigne la disparition conjointe de l'une et de l'autre, qui s'accompagne d'une libération d'énergie.

L'idée de matière noire commence à être largement admise mais la nature des particules qui la composent reste inconnue. Les modèles sont nombreux en physique des particules et l'un des buts aujourd'hui est de réduire le champ des possibles en multipliant les voies d'exploration, par exemple en recherchant des effets de cette matière mystérieuse sur la matière ordinaire et la lumière. Les observations de Planck montrent qu'il n'est pas nécessaire de faire appel à l'existence d'une forte annihilation matière noire - antimatière noire pour expliquer la dynamique des débuts de l'univers. En effet, un tel mécanisme produirait une quantité d'énergie qui influerait sur l'évolution du fluide lumière-matière, en particulier aux périodes proches de l'émission du rayonnement fossile. Or, les observations les plus récentes n'en portent pas la trace.


La zone bleue est exclue par les résultats actuels de la collaboration Planck: de nombreux modèles de matière noire sont ainsi écartés. © ESA - collaboration Planck


Ces nouveaux résultats sont encore plus intéressants lorsqu'ils sont confrontés aux mesures réalisées par d'autres instruments. Les satellites Fermi et Pamela, tout comme l'expérience AMS-02 à bord de la station spatiale internationale, ont observé un excès de rayonnement cosmique, pouvant être interprété comme une conséquence de l'annihilation de matière noire. Compte tenu des résultats de Planck, il va falloir préférer une explication alternative à ces mesures d'AMS-02 ou de Fermi (par exemple l'émission de pulsars non détectés) si l'on fait l'hypothèse - raisonnable - que les propriétés de la particule de matière noire sont stables au cours du temps.

Par ailleurs, la collaboration Planck confirme que la matière noire occupe un peu plus de 26 % de l'univers actuel (valeur issue de son analyse en 2013), et précise la carte de la densité de matière quelques milliards d'années après le Big-Bang grâce aux mesures en température et en polarisation en modes B.

Les neutrinos des premiers instants décelés


Les nouveaux résultats de la collaboration Planck portent aussi sur un autre type de particules très élusives: les neutrinos. Ces particules élémentaires "fantômes", produites en abondance dans le Soleil par exemple, traversent notre planète pratiquement sans interaction, ce qui rend leur détection extrêmement difficile. Il n'est donc pas envisageable de détecter directement les premiers neutrinos, produits moins d'une seconde après le Big-Bang, qui sont extrêmement peu énergétiques. Pourtant, pour la première fois, Planck a détecté sans ambiguïté l'effet de ces neutrinos primordiaux sur la carte du rayonnement fossile.

Les neutrinos primordiaux décelés par Planck ont été libérés une seconde environ après le Big-Bang, lorsque l'univers était encore opaque à la lumière mais déjà transparent à ces particules qui peuvent s'échapper librement d'un milieu opaque aux photons, tel que le coeur du Soleil. 380000 ans plus tard, lorsque la lumière du rayonnement fossile a été libérée, elle portait l'empreinte des neutrinos car les photons ont interagi gravitationnellement avec ces particules. Ainsi, observer les plus anciens photons a permis de vérifier les propriétés des neutrinos.


Contraintes et lien entre le nombre d'espèces de neutrinos, la vitesse d'expansion de l'univers aujourd'hui H0 et le paramètre ?8 qui caractérise la structuration de la matière à grande échelle. Les points de couleur correspondent aux contraintes température + effet de lentille gravitationnelle uniquement, les contours noirs en ajoutant la polarisation à toutes les grandes échelles angulaires et les oscillations acoustiques de baryons. Les lignes verticales correspondent à la valeur de Neff prédite par divers modèles: la ligne pleine correspond au modèle standard, les lignes pointillées à des modèles avec une quatrième espèce de neutrino (selon le type de neutrino, actif ou stérile, et l'époque de leur découplage). © ESA - collaboration Planck


Les observations de Planck sont conformes au modèle standard de la physique des particules. Elles excluent quasiment l'existence d'une quatrième famille de neutrinos auparavant envisagée d'après les données finales du satellite WMAP, le prédécesseur américain de Planck. Enfin, Planck permet de fixer une limite supérieure à la somme des masses des neutrinos, qui est à présent établie à 0.23eV (électronvolt).

Les données de la mission complète et les articles associés qui seront soumis à la revue Astronomy & Astrophysics (A&A) seront disponibles dès le 22 décembre 2014 sur le site de l'ESA. Ces résultats sont notamment issus des mesures faites avec l'instrument haute fréquence HFI conçu et assemblé sous la direction de l'Institut d'astrophysique spatiale (CNRS/Université Paris-Sud) et exploité sous la direction de l'Institut d'astrophysique de Paris (CNRS/UPMC) par différents laboratoires impliquant le CEA, le CNRS et les universités, avec des financements du CNES et du CNRS.


Cartes de 30 par 30 degrés du signal polarisé à 353 GHz. Les couleurs tracent l'émission thermique de la poussière alors que les reliefs dessinent le champ magnétique galactique. © ESA- collaboration Planck, mise en relief par Marc-Antoine Miville-Deschenes


Spectres de puissance angulaire du rayonnement fossile mesuré par Planck en température (TT), en polarisation scalaire (EE) et en croisant température et polarisation scalaire (TE). L'abscisse est exprimée en multipole , qui correspond à l'inverse d'une échelle angulaire ( =200 correspond à 1 degré environ, =30 à 6 degrés, =1500 à 0.13 degrés soit 8 minutes d'arc). Le modèle est représenté par les lignes rouges alors que les mesures correspondent aux point bleus. Planck permet à la polarisation du rayonnement fossile d'entrer dans l'ère de la cosmologie de précision. © ESA - collaboration Planck
Ce site fait l'objet d'une déclaration à la CNIL
sous le numéro de dossier 1037632
Informations légales