Avec l'aide du Very Large Telescope (VLT) de l'Observatoire Européen Austral (ESO), les astronomes ont découvert et étudié en détail la source d'émission radio la plus lointaine connue à ce jour. Cette source est un quasar à émission radio forte - un objet brillant avec des jets puissants émettant dans les longueurs d'onde radio - qui est si lointain que sa lumière a mis 13 milliards d'années à nous atteindre. Cette découverte pourrait fournir des indices importants pour aider les astronomes à comprendre les débuts de l'Univers.
Cette vue artiste montre à quoi devait ressembler le lointain quasar P172+18 et ses jets radio. À ce jour (début 2021), c'est le quasar le plus lointain avec des jets radio jamais trouvé. Il a été étudié grâce au Very Large Telescope de l'ESO. Il est si éloigné que la lumière qui en provient a voyagé pendant environ 13 milliards d'années pour nous atteindre: nous le voyons tel qu'il était lorsque l'Univers n'avait que 780 millions d'années environ.
Crédit: ESO/M. Kornmesser
Les quasars sont des objets très brillants qui se trouvent au centre de certaines galaxies et sont alimentés par des trous noirs supermassifs. Lorsque le trou noir consomme le gaz environnant, de l'énergie est libérée, ce qui permet aux astronomes de les repérer même lorsqu'ils sont très éloignés.
Le quasar récemment découvert, surnommé P172+18, est si lointain que la lumière qui en provient a voyagé pendant environ 13 milliards d'années pour nous atteindre: nous le voyons tel qu'il était lorsque l'Univers avait à peine 780 millions d'années. Si des quasars plus lointains ont été découverts, c'est la première fois que des astronomes ont pu identifier les signatures révélatrices de jets radio dans un quasar aussi tôt dans l'histoire de l'Univers. Seulement 10% des quasars, que les astronomes classent comme étant à émission radio forte, ont des jets qui brillent à des fréquences radio
(1).
P172+18 est alimenté par un trou noir environ 300 millions de fois plus massif que notre Soleil qui consomme du gaz à une vitesse stupéfiante. "Le trou noir mange la matière très rapidement, sa masse augmente à un rythme parmi les plus élevés jamais observés", explique l'astronome Chiara Mazzucchelli, membre de l'ESO au Chili, qui a mené cette découverte avec Eduardo Bañados du Max Planck Institute for Astronomy en Allemagne.
Les astronomes pensent qu'il y a un lien entre la croissance rapide des trous noirs supermassifs et les puissants jets radio repérés dans les quasars comme P172+18. On pense que ces jets sont capables de perturber le gaz autour du trou noir, augmentant ainsi la vitesse à laquelle le gaz tombe dedans. Par conséquent, l'étude des quasars à émission radio forte peut fournir des informations importantes sur la façon dont les trous noirs du début de l'Univers ont atteint leur taille supermassive si rapidement après le Big Bang.
"Je trouve très excitant de découvrir de 'nouveaux' trous noirs pour la première fois, et de fournir un élément de plus pour comprendre l'Univers primordial, d'où nous venons finalement nous-mêmes", déclare Chiara Mazzucchelli.
Cette image à grand champ en lumière visible de la région autour du quasar distant P172+18 a été créée à partir d'images du Digitized Sky Survey 2. L'objet lui-même se trouve très près du centre et n'est pas visible sur cette image, mais de nombreuses autres galaxies, beaucoup plus proches, sont visibles sur cette vue à grand champ.
Crédit: ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin
P172+18 a été identifié pour la première fois comme un quasar distant, après avoir été identifié dans un premier temps comme étant une source radio, au télescope Magellan de l'Observatoire de Las Campanas au Chili par Eduardo Bañados et Chiara Mazzucchelli. "Dès que nous avons reçu les données, nous les avons inspectées, et nous avons tout de suite su que nous avions découvert le quasar à émission radio forte le plus éloigné connu à ce jour", explique Eduardo Bañados.
Cependant, en raison d'un temps d'observation court, l'équipe ne disposait pas de suffisamment de données pour étudier l'objet en détail. Une série d'observations avec d'autres télescopes a suivi, notamment avec l'instrument X-shooter du VLT de l'ESO, ce qui leur a permis d'approfondir les caractéristiques de ce quasar, notamment en déterminant des propriétés clés telles que la masse du trou noir et la vitesse à laquelle il mange la matière de son environnement. Parmi les autres télescopes qui ont contribué à l'étude figurent le Very Large Array du National Radio Astronomy Observatory et le télescope Keck aux États-Unis.
L'équipe est très enthousiaste avec cette découverte, qui sera publiée dans The Astrophysical Journal, et elle pense que ce quasar à émission radio forte pourrait être le premier d'une longue série à être découvert, peut-être à des distances cosmologiques encore plus grandes. "Cette découverte me rend optimiste et je crois - et j'espère - que le record de distance sera bientôt battu", déclare Edourdo Bañados.
Les observations effectuées avec des installations telles qu'ALMA, dont l'ESO est partenaire, et avec le futur ELT (Extremely Large Telescope) de l'ESO pourraient contribuer à découvrir et à étudier en détail un plus grand nombre de ces objets des premiers temps de l'Univers.
Grâce au Very Large Telescope de l'ESO, les astronomes ont découvert et étudié en détail la source d'émission radio la plus lointaine connue à ce jour. Cette source est un quasar à forte émission radio - un objet brillant avec des jets puissants émettant dans des longueurs d'onde radio - qui est si lointain que sa lumière a mis 13 milliards d'années pour nous atteindre. Cette vidéo résume la découverte. Crédit: ESO
Cette séquence vidéo part d'une vue à grand champ de la région du ciel autour de P172+18 et se rapproche du quasar très éloigné, un objet lumineux qui se trouve au centre d'une galaxie lointaine et qui est alimenté par un trou noir supermassif. La galaxie elle-même est entourée d'une très grande bulle de gaz ionisé ; des vues d'artiste de la bulle et de la galaxie sont visibles dans cette séquence. La vue finale est une vue d'artiste du quasar et de ses jets radio.
Crédit: ESO/M. Kornmesser/L. Calçada/Digitized Sky Survey 2/N. Risinger (skysurvey.org). Music: Astral Electronic
Notes:
(1) Les ondes radio utilisées en astronomie ont des fréquences allant de 300 MHz à 300 GHz.