Nouvelle preuve de l'existence de jeunes planètes au sein de disques entourant de jeunes étoiles
Vue d'artiste d'un disque transitoire autour d'une étoile jeune
Grâce au Vaste Réseau (Sub-)Millimétrique de l'Atacama (ALMA), des astronomes ont trouvé d'indiscutables preuves de la récente formation de planètes dont les masses excèdent plusieurs fois celle de Jupiter au sein des disques de gaz et de poussière qui entourent quatre jeunes étoiles. Des mesures effectuées sur le gaz qui environne les étoiles ont par ailleurs permis de mieux cerner les propriétés de ces planètes.
Autour de chaque étoile ou presque orbite(nt) une ou plusieurs planètes. Toutefois, les conditions de leur formation demeurent aujourd'hui encore partiellement incomprises. Afin de lever ce voile de mystère, les astronomes étudient les disques de gaz et de poussière en rotation autour des jeunes étoiles à partir desquels les planètes se forment. La puissance d'ALMA leur a permis de s'affranchir de la petitesse de ces disques ainsi que de leur éloignement de la Terre.
Les disques transitoires constituent un type de disques particulier, dénués de poussière en leur centre, là où se situe l'étoile hôte. Cette mystérieuse absence de matière résulterait de l'un ou l'autre scénario ci-après: soit de puissants vents stellaires ainsi qu'un intense rayonnement ont balayé ou détruit cette matière [1], soit cette matière a été expulsée par les jeunes planètes massives en formation, alors qu'elles orbitent autour de leur étoile [2].
Image acquise par ALMA du disque transitoire HD 135344B
L'incomparable sensibilité d'ALMA d'une part, la netteté des images obtenues d'autre part, ont tout récemment permis à une équipe d'astronomes conduite par Nienke van der Marel de l'Observatoire de Leiden au Pays-Bas, de cartographier, avec un degré de précision inédit, la distribution de gaz et de poussière au sein de quatre disques transitoires [3]. Les résultats obtenus leur ont en outre permis de privilégier l'un des deux scénarii de disparition de la poussière centrale.
Les images nouvellement acquises montrent l'existence de quantités significatives de gaz au sein des trous de poussière [4]. A la surprise de l'équipe, il est toutefois apparu que le gaz présentait lui aussi une cavité, de dimension jusqu'à trois fois inférieure à celle du trou de poussière.
Cette observation trouve une seule et unique explication: les planètes massives nouvellement formées ont nettoyé le gaz à mesure qu'elles ont décrit leurs orbites autour de l'étoile centrale, et piégé les particules de poussière en périphérie [5].
“De précédentes observations suggéraient déjà la présence de gaz au sein des trous de poussière”, précise Nienke van der Marel. “ALMA étant capable de cartographier la matière sur la totalité du disque avec une résolution nettement supérieure à celle de tout autre instrument, nous avons été en mesure d'exclure l'autre scénario envisagé jusqu'à présent. Une cavité aussi profonde plaide nettement en faveur de l'existence de planètes dotées de masses de l'ordre de plusieurs masses joviennes, et résulte de leur balayage du disque.
Image d'ALMA du disque transitoire DoAr 44
Il est intéressant de noter que ces observations ont été effectuées alors que le réseau ALMA était encore en construction sur le Plateau Chajnantor au Chili. Il n'était doté alors que de 10% de son pouvoir de résolution actuel.
De nouvelles études, appliquées à d'autres disques transitoires, permettront peut-être d'établir l'universalité de ce scénario de défrichage planétaire. D'ici là, les observations d'ALMA auront fourni aux astronomes de précieux renseignements concernant le processus complexe de formation planétaire.
“L'ensemble des disques transitoires étudiés à ce jour et qui présentent de vastes trous de poussière, sont également caractérisés par des cavités de gaz. Grâce à ALMA, nous pouvons à présent déterminer le lieu ainsi que l'époque de formation de ces planètes géantes au sein de ces disques, puis comparer les résultats obtenus aux modèles de formation planétaire”, précise Ewine van Dishoek, de l'Université de Leiden et de l'Institut Max Planck dédié à la Physique Extraterrestre à Garching [6]. “La détection directe de planètes est à la portée des instruments actuels, et la prochaine génération de télescopes actuellement en cours de construction, tel le télescope géant Européen, nous permetta de repousser ces limites. ALMA permet de cibler les observations à venir.”
Notes
[1] Ce processus d'expulsion de la poussière et du gaz vers les régions périphériques se nomme photo-évaporation.
[2] De telles planètes sont difficiles à observer directement (eso1310). Des études antérieures, effectuées à des longueurs d'onde millimétriques (eso1325), n'ont par ailleurs pas permis d'acquérir une vue suffisamment détaillée des régions internes de formation planétaire pour tester les différents scénarii envisagés. D'autres études (eso0827) n'ont quant à elles pas permis de déterminer la quantité de gaz présente au sein de ces disques.
[3] Les quatre cibles d'observation étaient SR 21, HD 135344B (également baptisée SAO 206462), DoAr 44 et Oph IRS 48.
[4] Le gaz composant les disques transitoires est principalement constitué d'hydrogène, que l'observation de la distribution de monoxyde de carbone (CO) permet de tracer.
[5] Le processus de piégeage de la poussière se trouve expliqué dans un communiqué antérieur (eso1325).
[6] Les disques transitoires HD 142527 (eso1301 et ici) et J1604-2130 constituent d'autres exemples.
Pour plus d'information voir:
Ce travail de recherche a fait l'objet d'un article intitulé “Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA”, par N. van der Marel, et al., à paraître dans la revue Astronomy & Astrophysics en décembre 2015.